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CONTACT PROBLEM FOR A NARROW ANNULAR PUNCH.

UNKNOWN REGION OF CONTACT

UDC 539.3I. I. Argatov and S. A. Nazarov1

The nonlinear problem of determining the contact stresses and the contact zone under the base
of a narrow annular punch is studied. An asymptotic model of one-sided contact along the line
is constructed by the method of matched asymptotic expansions. Explicit asymptotic formulas
for the line-pressure density are obtained. The asymptotic representation of the contact arc is
given.

1. Formulation of the Problem and Discussions. Let Γ be the circumference of radius R
determined by the polar angle θ (see Fig. 1). We consider a ring Γ(ε) whose middle line is Γ and denote its
half-width and relative half-width by h and ε = h/R, respectively. The displacement vector u = (u1, u2, u3)
of the elastic half-space under the action of an annular punch with the base Γ(ε) satisfies the problem

µ∆xu(ε;x) + (λ+ µ) grad divu(ε;x) = 0, x3 < 0; (1.1)

σ31(u;x) = σ32(u;x) = 0, x3 = 0; (1.2)

σ33(u;x) = 0, x3 = 0, (x1, x2) /∈ Γ(ε); (1.3)

u3(ε;x) 6 −δ0 − β2x1, σ33(u;x) 6 0,
(1.4)

[u3(ε;x) + δ0 + β2x1]σ33(u;x) = 0, x3 = 0, (x1, x2) ∈ Γ(ε);

u(ε;x) = o(1), |x| = (x2
1 + x2

2 + x2
3)1/2 →∞. (1.5)

Here ∆x is the Laplace operator, λ and µ are the Lamé parameters, σ3j(u) are the stress-tensor components,
and δ0 and β2 are the translation of the punch and its rotation about the Ox2 axis, respectively.
Expressing the normal component of the displacement vector at the boundary point in terms of the surface
pressure p and denoting Young’s modulus and the Poisson ratio by E and ν, respectively, we write the
conditions of one-sided contact (1.4) in the form

p(x1, x2) > 0⇒
∫∫
Γ(ε)

p(ξ1, ξ2)√
(x1 − ξ1)2 + (x2 − ξ2)2

dξ1 dξ2 =
πE

1− ν2
(δ0 + β2x1),

p(x1, x2) = 0⇒
∫∫
Γ(ε)

p(ξ1, ξ2)√
(x1 − ξ1)2 + (x2 − ξ2)2

dξ1 dξ2 >
πE

1− ν2
(δ0 + β2x1), (1.6)

p(x1, x2) > 0, (x1, x2) ∈ Γ(ε).
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Fig. 1

Remark 1. It follows from relations (1.6) that the contact cannot occur at the points (x1, x2) ∈ Γ(ε),
at which the punch surface is above the undisturbed boundary of the elastic base.

Formulated within the framework of the linear theory of elasticity, problem (1.1)–(1.5) is nonlinear.
Since the calculation scheme of the structure changes upon loading (the new constraints arise or the existing
constraints fail), the nonlinearity of this kind is called the structural nonlinearity. The mathematical aspects of
these problems were studied by methods of the theory of variational inequalities (see, e.g., [1, 2]). Gol’dshtein
and Spektor [3] developed methods of qualitative analysis. Numerical algorithms were proposed in [1, 2,
4]. Khludnev [5] studied the problems of optimal control. Nazarov and Polyakova [6] derived an inequality
similar to that considered in the present study and used it to formulate the fracture criteria in the mechanics
of cracking.

The distinguishing feature of the above-formulated problem is the need to indicate when the type of
boundary condition in (1.4) should be changed. The unknown zone of contact is a narrow subregion of the
ring Γ(ε), which contracts to a certain arc of circumference Γ as ε decreases. In this case, we will deal with
the contact along the line [7]. The stage-by-stage process of refining the boundaries of the region on Γ(ε)
where the contact between the punch and the elastic base occurs is called the contact-zone variation [8].

Below, we consider the asymptotic representations used to construct an approximate solution of prob-
lem (1.1)–(1.5). They were first employed in [7, 9, 10]. The method of matched expansions used in Sec. 3 is
outlined in detail in [11]. The aim of the present study is to obtain compact formulas suitable for calculations.
Argatov and Nazarov [8] treated a similar problem for the Laplace operator and substantiated the asymptotic
solution. The assumption that friction is absent allows one to use the Papkovich–Neuber representation and
the results of [8] to solve the problem posed.

2. External Asymptotic Representation. We denote the solution of the Boussinesq problem of
an elastic half-space x3 6 0 subjected to a unit point force applied at the origin of coordinates and directed
oppositely to the Ox3 axis by T . The displacement vector of the half-space subjected to the load distributed
along the contour Γ with a certain line density P is given by

v(P ;x) =

π∫
−π

P (τ)T (x1 −R cos τ, x2 −R sin τ, x3)Rdτ. (2.1)

The vector function (2.1) serves as an approximation to the solution u in the region remote from Γ(ε)
if P is interpreted as the intensity of contact pressures per unit length of the arc of the middle line of the
punch base.

In the neighborhood of Γ, we introduce the curvilinear coordinates (θ, y1, y2) (see Fig. 1) related to
the Cartesian coordinates by the formulas

x1 = (R− y1) cos θ, x2 = (R− y1) sin θ, x3 = y2. (2.2)

The Cartesian components of the vector of the displacements caused by the unit force applied at the point
on Γ with the angular coordinate τ are written in the form
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T1(θ,y; τ) = −R(cos θ − cos τ)− y1 cos θ
4πµRy(θ, τ)

( y2

Ry(θ, τ)2
+

1− 2ν
Ry(θ, τ)− y2

)
,

T2(θ,y; τ) = −R(sin θ − sin τ)− y1 sin θ
4πµRy(θ, τ)

( y2

Ry(θ, τ)2
+

1− 2ν
Ry(θ, τ)− y2

)
,

4πµT3(θ,y; τ) = − 1
Ry(θ, τ)

( y2
2

Ry(θ, τ)2
+ 2(1− ν)

)
,

Ry(θ, τ)2 = 4R2(1 +R−1y1) sin2[(θ − τ)/2] + |y|2, |y| = (y2
1 + y2

2)1/2.

We introduce the projections of vector (2.1) onto the unit vectors t(θ), e1(θ), and e2 (see Fig. 1):

Vt(P ; θ,y) =

π∫
−π

P (τ)[−T1(θ,y; τ) sin θ + T2(θ,y; τ) cos θ]Rdτ,

V1(P ; θ,y) =

π∫
−π

P (τ)[−T1(θ,y; τ) cos θ − T2(θ,y; τ) sin θ]Rdτ, (2.3)

V2(P ; θ,y) =

π∫
−π

P (τ)T3(θ,y; τ)Rdτ.

We assume that the function P is continuous, and its derivative is piecewise continuous and has
discontinuities of the first kind (these conditions hold below). Using the methods of asymptotic analysis
[6, 7, 9, 10] of integrals of the type (2.3), we obtain the representations

4πµVt(P ; θ,y) = (1− 2ν) p.v.

θ+π∫
θ−π

P (τ)
cos[(τ − θ)/2]
sin[(τ − θ)/2]

dτ + . . . ,

4πµV1(P ; θ,y) = −2y1y2

|y|2
P (θ) + 2(1− 2ν) sign (y1)

(
arctan

|y2|
|y1|
− π

2

)
P (θ) +

1− 2ν
2R

Q+ . . . , (2.4)

4πµV2(P ; θ,y) = 4(1− ν)
[
P (θ) ln

|y|
8R
− (JP )(θ)

]
− 2y2

2

|y|2
P (θ) + . . .

as |y| → 0. Here p.v. is the principal value of the integral in the Cauchy sense, Q is the resultant of the
loads pressing the punch against the surface of the elastic base, and J is the integral operator:

(JP )(θ) =
1
2

π∫
−π

P (τ)− P (θ)
2| sin[(τ − θ)/2]|

dτ, Q =

+π∫
−π

P (τ)Rdτ. (2.5)

Analysis of the estimates of the terms discarded in relations (2.4) is beyond the scope of this paper;
we note only that they significantly depend on the differential properties of the density P [8–10].

3. Internal Asymptotic Representation. In the neighborhood of the punch base, we pass to the
local coordinate system (θ, y1, y2), changing the variables (2.2) in relations (1.1)–(1.4) written in cylindrical
coordinates. We introduce the “fast” variables

η = (η1, η2) = ε−1(y1, y2).

Retaining the leading (relative to the parameter ε) terms in the resulting relations, we formulate the problem
for the internal asymptotic representation of the solution of the initial problem in the half-plane η2 6 0:

w(θ,η) = wt(θ,η)t(θ) +W1(θ,η)e1(θ) +W2(θ,η)e2. (3.1)
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By virtue of the vector equation (1.1), we obtain the relations

µ∆ηW1(θ,η) + (λ+ µ)[∂2
1W1(θ,η) + ∂1∂2W2(θ,η)] = 0,

(3.2)
µ∆ηW2(θ,η) + (λ+ µ)[∂1∂2W1(θ,η) + ∂2

2W2(θ,η)] = 0;

µ∆ηwt(θ,η) = 0, η2 < 0, (3.3)

where ∆η is the two-dimensional Laplace operator and ∂i = ∂/∂ηi. Equation (1.2) implies the boundary
conditions

µ∂2wt(θ,η) = 0, η2 = 0; (3.4)

τ12(W ;η) ≡ µ(∂1W2(θ,η) + ∂2W1(θ,η)) = 0, η2 = 0. (3.5)

Formula (1.3) is replaced by

τ22(W ;η) ≡ λ∂1W1(θ,η) + (λ+ 2µ)∂2W2(θ,η) = 0, η2 = 0, R < |η1|. (3.6)

The conditions of one-sided contact (1.4) can be transformed to give

W2(θ,η) 6 −δ0 − β2R cos θ, τ22(W ;η) 6 0,
(3.7)

[W2(θ,η) + δ0 + β2R cos θ]τ22(W ;η) = 0, η2 = 0, −R < η1 < R.

Within the framework of the method of matched expansions, formulas (3.2)–(3.7) should be supple-
mented by the conditions that characterize the behavior of w at infinity. The procedure of matching of the
internal (3.1) and external (2.1) asymptotic representations assumes that the leading terms of the asymptotic
expansions of v(P ; θ,y) and w(θ,η) coincide as |y| → 0 and |η| = (η2

1 + η2
2)1/2 →∞, respectively. According

to (2.4), we have

4πµwt(θ,η) = (1− 2ν) p.v.

θ+π∫
θ−π

P (τ)
cos[(τ − θ)/2]
sin[(τ − θ)/2]

dτ + o(1); (3.8)

4πµW1(θ,η) = −2η1η2

|η|2
P (θ) + 2(1− 2ν) sign (η1)

(
arctan

|η2|
|η1|
− π

2

)
P (θ) +

1− 2ν
2R

Q+ o(1),

(3.9)

4πµW2(θ,η) = 4(1− ν)
[
P (θ)

(
ln
|η|
R
− ln

8R
h

)
− (JP )(θ)

]
− 2η2

2

|η|2
P (θ) + o(1)

as |η| → ∞.
One can see that, for a “plane” boundary layer, problem (3.2)–(3.9) splits into two problems: the

two-dimensional problem of the theory of elasticity which comprises relations (3.2), (3.5)–(3.7), and (3.9) and
the problem of “antiplane” shear (3.3), (3.4), and (3.8), the dependence on the “slow” angular coordinate θ
being parametric.

The function wt, which characterizes the slippage of the half-space boundary in the tangential direction,
is given by

wt(θ) =
(1− 2ν)(1 + ν)

2πE
p.v.

θ+π∫
θ−π

P (τ)
cos[(τ − θ)/2]
sin [(τ − θ)/2]

dτ.

We now determine the vector W = (W1,W2). Since relations (3.2), (3.5)–(3.7), and (3.9) govern the two-
dimensional contact problem for a punch with a rectilinear horizontal base, the following two situations are
possible: either the contact condition W2(θ, η1, 0) = −δ0 − β2R cos θ or the stress-free conditions are realized
everywhere on the interval |η1| 6 R.
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The displacements of the points of the elastic half-plane are expressed in terms of the potential ϕ by
the Kolosov–Muskhelishvili formula [12]

2µ(W1(η) + iW2(η)) = æϕ(η) + ϕ(η̄)− (η − η̄)Φ(η). (3.10)

Here η = η1 + iη2, Φ(η) = ϕ′(η), and æ = 3 − 4ν; the bar denotes the complex-conjugate quantity, and
the prime denotes differentiation with respect to η. If the punch is loaded by a unit force, then Φ̂1(η) =
(2π)−1(R2 − η2)−1/2 [12] and

ϕ̂1(η) = − 1
2πi

ln
( η
R

+

√
η2

R2
− 1

)
+ c. (3.11)

Setting c = −[4(æ + 1)]−1(æ − 1) in (3.11) and using formula (3.10), one can construct a complex function
that satisfies relations (3.1), (3.5), and (3.6) and the condition Ŵ2(η) = 0 for |η1| < R and η2 = 0. Moreover,
the formulas

4πµŴ1(η) = −2η1η2

|η|2
+ 2(1− 2ν) sign (η1)

(
arctan

|η2|
|η1|
− π

2

)
+O(|η|−1),

4πµŴ2(η) = 4(1− ν) ln
2|η|
R
− 2η2

2

|η|2
+O(|η|−1)

are valid as |η| → ∞.
By construction, the functions

W1(θ,η) = P (θ)Ŵ1(η) +
(1− 2ν)(1 + ν)

4πER
Q; (3.12)

W2(θ,η) = P (θ)Ŵ2(η)− 2(1− ν2)
πE

[
P (θ) ln

16R
h

+ (JP )(θ)
]

(3.13)

satisfy relations (3.2), (3.5), (3.6), and (3.9). The contact pressure determined by the principal term has the
form

p(θ, y1) =
P (θ)

π
√
h2 − y2

1

. (3.14)

Below, we inquire whether the constraint (3.7) can be imposed on W1 and W2.
4. Resulting Variational Inequality and the Principal Term in the Logarithmic Asymp-

totic Representation of Its Solution. Let P (θ) > 0. By virtue of (3.14), the second relation in (3.7)
becomes an exact inequality and the first relation becomes an equality. Therefore, according to (3.13), we
obtain

P (θ) > 0 ⇒ P (θ) ln
16R
h

+
1
2

π∫
−π

P (τ)− P (θ)
2| sin [(τ − θ)/2]|

dτ =
πE

2(1− ν2)
(δ0 + β2R cos θ). (4.1)

If P (θ) = 0, the functions (3.12) and (3.14) are independent of the “fast” variables and

P (θ) = 0 ⇒ 1
2

π∫
−π

P (τ)
2| sin [(τ − θ)/2]|

dτ >
πE

2(1− ν2)
(δ0 + β2R cos θ). (4.2)

Finally, the situation where P (θ) < 0 is impossible, since it contradicts the second condition in (3.7), i.e., the
following requirement arises

P (θ) > 0, θ ∈ (−π, π]. (4.3)

The function P is determined from relations (4.1)–(4.3) and involves all the assumptions in the external and
internal asymptotic representations of the solution of the initial problem.
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For simplicity, we introduce the notation

Λ = ln
16R
h
, γ(θ) =

2(1− ν2)
πER

P (θ), ϕ(θ) =
δ0

R
+ β2 cos θ. (4.4)

In accordance with the general scheme for construction of the variational inequalities (see, e.g., [1]), we
collect formulas (4.1)–(4.3), thus formulating the problem for the desired density γ. We multiply the equality
in (4.1) and the inequality in (4.2) by an arbitrary smooth nonnegative function σ and integrate over Γ. With
allowance for (4.4), we obtain

Λ(γ, σ) + (Jγ, σ) > (ϕ, σ), (γ, σ) =

π∫
−π

γ(τ)σ(τ) dτ. (4.5)

Setting σ = γ, we repeat the procedure. By virtue of (4.1) and (4.2), we find

Λ(γ, γ) + (Jγ, γ) = (ϕ, γ). (4.6)

Subtracting (4.5) from (4.6), we obtain the formula

Λ(γ, γ − σ) + (Jγ, γ − σ) 6 (ϕ, γ − σ) ∀ σ > 0. (4.7)

The resulting variational inequality is formulated as the problem of determining the nonnegative function
γ that satisfies relation (4.7) for an arbitrary smooth nonnegative function σ. We note that the solution
of problem (4.7) which possesses a certain smoothness (if it exists) satisfies (4.1)–(4.3); these formulas are
derived from (4.7) according to the general scheme [1].

Remark 2. By virtue of the definite properties of the operator J [8], the question of solvability
of problem (4.7) remains open. However, the asymptotic solution (4.7) is sufficient for construction of the
asymptotic representation of the solution of problem (1.1)–(1.5).

Problem (4.7) contains a large parameter. Ignoring the second term on the left side of (4.7), we obtain

Λ(γ1, γ1 − σ) 6 (ϕ, γ1 − σ) ∀σ > 0. (4.8)

Let γ1 be the solution of the variational inequality (4.8). We substitute the function σ = γ1 + σ1 with
arbitrary σ1 > 0 as a trial function into (4.8) and obtain the inequality (Λγ1 − ϕ, σ1) > 0 ∀σ1 > 0. Hence,

Λγ1(θ)− ϕ(θ) > 0, θ ∈ (−π, π]. (4.9)

We first set σ = 0 and then σ = 2γ1 in (4.8). As a result, we have

(Λγ1(θ)− ϕ(θ))γ1(θ) = 0, θ ∈ (−π, π]. (4.10)

Using the notation (4.4), we rewrite (4.9) and (4.10) in the alternative form and add the condition of non-
negative desired density:

P1(θ) > 0⇒ P1(θ) ln
16R
h

=
πE

2(1− ν2)
(δ0 + β2R cos θ); (4.11)

P1(θ) = 0⇒ δ0 + β2R cos θ 6 0; (4.12)

P1(θ) > 0, θ ∈ (−π, π]. (4.13)

Let (t)+ = (t + |t|)/2. As a result, the function P1, which satisfies (4.11)–(4.13) and, hence, is the
solution of problem (4.8), has the form

P1(θ) =
πE

2(1− ν2)
1

ln (16R/h)
(δ0 + β2R cos θ)+. (4.14)

Relations (4.11)–(4.13) formalize the problem of one-sided contact for a Winkler elastic base.
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5. Contact-Zone Variation. For the initial problem, we assume that β2 > 0 and −1 6 −δ0/(β2R) <
1. In this case, we have P1(θ) > 0, provided the magnitude of the angle θ is bounded by the value

Θ1 = arccos [−δ0/(β2R)]. (5.1)

The contact problems can be solved by an iterative method which consists of solving the problem with
a fixed contact zone in each iteration. In the transition from one iteration to another, the points at which
the contact pressure is negative are excluded from the region of contact. At the beginning of the process,
it is necessary that the assumed region of contact enclose a real one. Argatov and Nazarov [8] showed that
the desired narrow zone of contact is a small perturbation of the arc θ ∈ (−Θ1,Θ1). One should expect that
formula (4.14) gives the upper bound (see Remark 1) and the improvement of the first-order approximation
decreases the quantity (5.1).

We set γn(θ) ≡ 0 for θ /∈ (−Θn−1,Θn−1). In accordance with (2.5), we have

(Jγn)(θ) =
1
2

Θn−1∫
−Θn−1

γn(τ)− γn(θ)
2| sin[(τ − θ)/2]|

dτ

− γn(θ)
2

( −Θn−1∫
−π

1
2| sin [(τ − θ)/2]|

dτ +

π∫
Θn−1

1
2| sin [(τ − θ)/2]|

dτ

)
.

Calculating these integrals and substituting the result into (4.8), we obtain

γn(θ)
(

ln
16
ε

+
1
2

ln
[

tan
Θn−1 + θ

4
tan

Θn−1 − θ
4

])
+

1
2

Θn−1∫
−Θn−1

γn(τ)− γn(θ)
2| sin [(τ − θ)/2]|

dτ = ϕ(θ) (5.2)

for θ ∈ (−Θn−1,Θn−1).
We write the solution of Eq. (5.2) in the form of the series

γn(θ) ∼ Λ−1γ1
n(θ) + Λ−2γ2

n(θ) + . . . , γ1
n(θ) = ϕ(θ),

(5.3)

γ2
n(θ) = −1

2
ϕ(θ) ln

[
tan

Θn−1 + θ

4
tan

Θn−1 − θ
4

]
− 1

2

Θn−1∫
−Θn−1

ϕ(τ)− ϕ(θ)
2| sin [(τ − θ)/2]|

dτ.

Retaining two terms in the expansion (5.3), we obtain the second approximation to the solution of problem
(4.1)–(4.3):

P2(θ) =
πE

2(1− ν2)
1
Λ

(
δ0 + β2R cos θ +

β2R

Λ

[
cos θ − cos

Θ1

2
cos

θ

2

]
− δ0 + β2R cos θ

2Λ
ln
[

tan
Θ1 + θ

4
tan

Θ1 − θ
4

])
+
, (5.4)

which improves (4.11).
The contact arc θ ∈ (−Θ2,Θ2) corresponds to the line-pressure distribution density (5.4). It is note-

worthy that the equality Θ2 = Θ1−Λ−1S1 ensures the same accuracy as that in (5.4). Ignoring the quantities
O(Λ−2 ln Λ), we obtain the following transcendental equation for the contact-zone variation:

S1

[
1− 1

2Λ
ln
(S1

4Λ
tan

Θ1

2

)]
=

1
2

tan
Θ1

2
.

Its solution has the asymptotic representation S1 = (1/2) tan (Θ1/2)+O(Λ−1 ln Λ) (the subtrahend in square
brackets is ignored). This formula fails for values of Θ1 close to π, i.e., it does not describe detachment of
the punch from the base.
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If Θ0
1 = π, which corresponds to δ0 = β2R, Eq. (5.2) coincides with (4.1) and admits a closed-form

solution [10]. Retaining, as before, two terms in its logarithmic asymptotic representation, we obtain

P 0
2 (θ) =

πE

2(1− ν2)
β2R

Λ

(
1 + cos θ +

2
Λ

cos θ
)

+
.

The angle of the contact arc is determined from the equation Λ(1 + cos Θ0
2) + 2 cos Θ0

2 = 0. Its solution is
written in the finite form and has the asymptotic representation Θ0

2 = π − 2Λ−1/2 +O(Λ−3/2).
Conclusions. The formulas obtained should be understood precisely in the asymptotic sense: they are

the more exact the smaller the parameters ε and Λ−1 [Λ = ln(16/ε)]. In the neighborhood of the contact-zone
ends, the stress-strain state of the elastic body is three-dimensional and, hence, it cannot be described by the
“plane” formula (3.14). To determine the contact pressures in these regions, one can combine numerical and
asymptotic methods. The constructed formulas do not allow one to determine the asymptotic representation
of the contact zone with an accuracy comparable with the half-width of the punch h = εR. Only owing to the
new scaling factor Λ−1R that appears in the resulting problem does it become possible to study the question
of the contact-arc variation.

We mention some ways of generalization of the above-considered one-dimensional model of one-sided
contact. Replacement of the elastic base by a layer of finite thickness complicates the model insignificantly.
For a punch of variable thickness with a “wavy” base and a noncircular middle line, the problem can be
studied with the use of the results of [6, 8, 10].

This work was supported by the International Association for Cooperation between Researchers of the
Independent States of the former Soviet Union (Grant No. INTAS-96-0876).
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